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An interacting spin-fermion model is exactly solved on an open chain. In a certain representation, it is the
nearest-neighbor Hubbard model in the limit of infinite U �local interaction�. Exact solution of its complete
energy eigenspectrum is accomplished by introducing a unitary transformation which maps the original prob-
lem to a tight-binding model of the fermions only. Physically, the exact solution implies the absence of
Nagaoka ferromagnetism in the ground state for arbitrary electron densities. The present method solves a class
of very general models exactly. Few more problems are discussed as an application of this unitary transform
method.
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I. INTRODUCTION

The physics of strongly correlated lattice electrons is
complex as well as interesting. The electronic properties of
very many exciting materials �such as, the transition-metal
oxides, rare earths etc.� exhibit this physics in a variety of
different ways. A minimal model for understanding these
systems requires one to consider, at least, the local coulomb
repulsion, in addition to the tight-binding hopping of elec-
trons. In an effective one-band system, the local repulsion,
U, is the energy cost for putting two electrons with opposite
spins together on the same site �Wannier orbital�. This
model, famously called the Hubbard model, has been a sub-
ject of great interest. It poses one of the most difficult prob-
lems in quantum many-body theory. Although the model has
been long solved exactly in one dimension �1D� using Bethe
ansatz,1 and also shown to be integrable,2 it still evades an
exact analytical solution in higher dimensions. In recent
times, the interest in the Hubbard model has been further
reinforced by the high-TC superconductivity in cuprates,3 and
also by the need to understand other phenomena in strongly
correlated electrons.4

There has been a long-standing interest in understanding
the metallic ferromagnetism through Hubbard model. The
limit of infinite local repulsion in one-band Hubbard model
presents an interesting case study in this context. In this
limit, the ground state on certain lattices �for example, square
lattice� was shown to be saturated metallic ferromagnetic for
a single hole in an otherwise half-filled system �Nagaoka-
Thouless theorem�.5,6 Subsequent variational and numerical
studies have shown that the Nagaoka ferromagnetism sur-
vives for finite hole densities away from half-filling, up to a
�lattice dependent� critical doping.7–10 The Lieb-Mattis theo-
rem, however, rules out the existence of ferromagnetism in
1D.11 For the infinite-U Hubbard model with nearest-
neighbor hopping, it implies the lack of Nagaoka ferromag-
netism, which is borne out by the analytic studies of this
problem for one and two holes explicitly. These investiga-
tions either use the Bethe ansatz approach,12 or work with an
effective spin Hamiltonian in the presence of a single hole,13

starting with a Gutzwiller projected Hamiltonian.
Recently, we have developed a different approach to the

infinite-U Hubbard problem.14 In our formulation, we ca-

nonically represent an electron in terms of a spinless fermion
and the spin-1/2 �Pauli� operators. We then write the Hub-
bard model in this representation. Finally, we take the limit
U→�, and get the infinite-U Hamiltonian, H�. Although our
prescription is applicable to any lattice, it clearly distin-
guishes the bipartite lattices from others. By exploiting the
two sublattice structure of a bipartite lattice, we can write H�

in a beautiful form �resembling the Anderson-Hasegawa
Hamiltonian, but different from it and fully quantum me-
chanical�, which reveals the phenomenon of metallic ferro-
magnetism in the infinite-U Hubbard model in a very trans-
parent way. �Otherwise, we all know that the Nagaoka
ferromagnetism is a nonobvious strong correlation effect.�

In the present study, we investigate 1D infinite-U Hub-
bard problem within our approach, and exactly solve it by
means of a suitably constructed unitary transformation. From
this exact solution, we conclude that its ground state is “cor-
related metallic” and “ideal paramagnetic” for arbitrary den-
sity of electrons. Ours is a “non-Bethe” method which also
solves a class of very general models in 1D. The infinite-U
Hubbard model happens to be one among them. This paper is
organized as follows. First we present the exact solution of
H� in 1D. Then, we identify a general class of models which
can be exactly solved by our method. We also briefly discuss
the Anderson-Hasegawa problem and the minimal-coupling
lattice Hamiltonian in the light of the ideas developed here.
Finally, we conclude with a summary.

II. INFINITE-U HUBBARD MODEL IN 1D

According to a recently developed canonical �and invert-
ible� representation, an electron can be described in terms of
a spinless fermion and the Pauli operators.14 On a bipartite
lattice, we can represent the electrons on different sublattices
in two different, but equivalent, ways. �In principle, we can
generate infinitely many equivalent representations through
unitary transformations, but our purpose is served by the
following two forms.� The electronic operators in this

representation are: f̂ l,↑
† = �̂l�l

+, f̂ l,↓
† = �i�̂l− �̂l�l

z� /2 on the

odd-numbered sites �l=1,3 ,5 , . . .�, and f̂ l,↑
† = i�̂l�l

+, f̂ l,↓
†

= ��̂l− i�̂l�l
z� /2 on the even-numbered sites, where �̂l

= �âl
†+ âl� and i�̂= �âl

†− âl� are the Majorana fermions. Here,
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âl and âl
† are the spinless fermion operators and �� l the Pauli

operators on the lth site. Moreover, the electronic number

operator is written as: N̂e=L+�l=1
L �1− n̂l��l

z, and the “physi-

cal spin” of an electron on the lth site is given by S� l
= n̂l�� l /2, where n̂l= âl

†âl. Here, L is the total number of lattice
sites. For completeness, also note the local mapping: �0�
= � −

� �, �↑ �= � +
• �, �↓ �= � −

• �, and �↑↓�= � +
� � �on an odd-numbered

site� and =−� +
� � �on an even-numbered site�. Here, �0�, �↑ �,

�↓ �, and �↑↓� are the local electronic states �in the usual
notation�. The states � � � and � • � denote the empty and filled
site, respectively, for the spinless fermion, and
��+ � , �−�� is the basis set of a single Pauli spin. Note that
�+ � and �−� represent the actual electronic spin on a site
when it is occupied by a spinless fermion.

Now, consider the Hubbard model with nearest-neighbor
hopping on an open chain. �The reason for working with an
“open” chain will become clear shortly.� Since the hopping
process is bipartite, we can use the above two forms of the
representation for electrons to convert the Hubbard model
into a corresponding “spin-fermion” model. In the limit of
infinite-U, we get the following Hamiltonian:

H� = − t�
l=1

L−1

X̂l,l+1�âl
†âl+1 + âl+1

† âl� . �1�

For the details of its derivation, please refer to Ref. 14. Here,

X̂l,l+1= �1+�� l ·�� l+1� /2 is the Dirac-Heisenberg exchange op-
erator.

A. Exact analytic solution

For the moment, we forget the physical origin and pur-
pose of H�, and just take it as a given spin-fermion model in
one dimension. Our immediate goal is then to find its eigen-
values and eigenstates. There are two key features that we
make use of in exactly solving this problem. First is the

property, X̂l,l+1
2 =1, of the exchange operators. The second is

the open boundary condition of the 1D lattice �similar to the
XY spin-1/2 chain15�. We exploit the former to construct a
unitary operator which, on an open chain, transforms Eq. �1�
to a tight-binding model of the spinless fermions only.

We first define the following unitary operator on the first
bond �that is, for the pair of sites �1,2�	:

U1,2 = �1 − n̂2� + n̂2X̂2,1. �2�

Here, X̂2,1= X̂1,2. Clearly, U1,2
† =U1,2 and U1,2

2 =1. Thus, U1,2 is
both Hermitian as well as unitary. Moreover, it has the fol-
lowing important property:

U1,2
† �â1

†X̂1,2â2�U1,2 = â1
†â2. �3�

In the above equation, U1,2 leaves â1 and X̂1,2 unaffected

while transforming â2→ X̂2,1â2. Thus, U1,2 gets rid of the

exchange operator X̂1,2, and what remains is the hopping of
the fermions alone. As it happens, we will get rid of the
exchange operators on each bond by carefully following this
approach.

Before constructing a similar U2,3 for the next bond, it is
important to consider the effect of U1,2 on other terms in H�.
Clearly, U1,2 leaves the operators on other bonds unaffected,
except for the bond �2,3�. The net effect of this unitary trans-
formation on H� is the following:

U1,2
† H�U1,2

= − t
�â1
†â2 + â2

†â1� + �â2
†X̂1,2X̂2,3â3 + â3

†X̂3,2X̂2,1â2�

+ �
l=3

L−1

�âl
†X̂l,l+1âl+1 + âl+1

† X̂l+1,lâl�� . �4�

The U1,2 transfers X̂1,2 from the first bond to the second. We

define X̂2,3= X̂1,2X̂2,3 and X̂3,2= X̂3,2X̂2,1, which replace X̂2,3

on bond �2,3�. Note that X̂2,3
† = X̂3,2� X̂2,3 and X̂2,3

† X̂2,3

= X̂3,2X̂2,3=1. Thus, X̂2,3 is unitary but not Hermitian �unlike

X̂2,3�.
Now we define the following unitary operator for getting

rid of X̂2,3 and X̂3,2 from the terms inside the second paren-
theses in Eq. �4�:

U2,3 = �1 − n̂3� + n̂3X̂3,2. �5�

Note that U2,3 is unitary but not Hermitian �unlike U1,2�. We

can show that X̂2,3 is invariant under U2,3, while

U2,3
† â3U2,3 = â3X̂3,2. �6�

Therefore,

U2,3
† �â2

†X̂2,3â3�U2,3 = â2
†â3. �7�

Moreover, U2,3
† �â3

† X̂3,4 â4�U2,3 = â3
† X̂3,4 â4, where X̂3,4

= X̂2,3X̂3,4= X̂1,2X̂2,3X̂3,4. It is clear by now that we can con-
tinue this process, and get rid of all the exchange operators in
H�. To achieve this, we define the following general unitary
operators:

Ul,l+1 = �1 − n̂l+1� + n̂l+1X̂l+1,l, �8�

U = �
l=1

L−1

Ul,l+1, �9�

where X̂l,l+1= X̂l−1,lX̂l,l+1=�m=1
l X̂m,m+1 for l=2, L−1. We can

show that the full unitary operator U, of Eq. �9�, transforms
H� to a Hamiltonian of free spinless fermions. That is,

U†H�U = − t�
l=1

L−1

�âl
†âl+1 + âl+1

† âl� , �10�

=�
k

�kâk
†âk, �11�

where �k=−2t cos k and k is the momentum. The operators
�âk� are the fermions in the momentum space. Since Eq. �10�
is derived on a chain with open boundary condition, the Fou-
rier transformation between �âl� and �âk� is defined as âl
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= 2
L+1�kâk sin kl, where k=n� / �L+1� for n=1,2 , ¯ ,L.

Hence, the exact solution of H� in 1D.
It should be pointed out that on a closed chain �1D lattice

with periodic boundary condition�, we would have an extra

term, −tX̂L,1�âL
†â1+H.c.�, in the H�. This term would not

simplify under U to give a simple tight-binding form. There-
fore, the open boundary condition is important to our analy-
sis. To this end, we also note that

U†N̂U = N̂ and U†M̂�U = M̂�, �12�

where N̂=�l=1
L n̂l is the number operator of the spinless fer-

mions and M̂�=�l=1
L �l

z is the total �z operator. Therefore, U
diagonalizes a more general Hamiltonian: H=H�−�N̂

−�M̂�, where � is the chemical potential of the spinless
fermions and � is the external “magnetic” field acting on the
spins.

The above exercise presents a rigorous and transparent
case of the complete decoupling of the Pauli and Fermi at-
tributes of the electron. As a result of this decoupling, the
energy eigenvalues of H� become independent of spins, giv-
ing rise to an extensive entropy in every eigenstate. Just as
the spinless fermions �âl� transform under U, the spins ��� l�
also transform to new spins. However, the total �z is invari-
ant under U, as noted in Eq. �12�. It is these transformed
spins that are absent in the free spinless fermion Hamiltonian
�Eq. �10�	.

B. Absence of the Nagaoka ferromagnetism in 1D

In order to discuss the ground state of the infinite-U Hub-
bard model, first let us recall the complete connection be-
tween the problem worked out in Sec. II A and the physical
Hubbard model. Technically, the infinite-U Hubbard model
in our representation is not just H�, but H�+��l�

1
2 − n̂l�. That

is, the physical problem is described by H� with an infinite
chemical potential for the spinless fermions �please look into
Ref. 14 for details�. Next, we note that N=Ne−2ND, where N
is the total number of spinless fermions �that is, the number
of singly-occupied sites in terms of the electrons�, Ne is the
total number of electrons, and ND is the total number of
doubly occupied sites. Clearly, N is a conserved quantity of
H� �evident from Eq. �1�	. So is Ne, and hence ND. It is
evident from the following explicit form of H� in terms of
the electron operators:

H� = −
t

2 �
l=1

L−1

�
s

↑,↓

�n̂l,s − n̂l+1,s�2� f̂ l,s̄
† f̂ l+1,s̄ + H.c.	 . �13�

Since Ne=N+2ND, we can label the sectors of states for a
given Ne in terms of the partitions: �N ,ND�. The physical
validity of a partition, however, depends upon whether Ne
	L �less than or equal to half-filling� or Ne
L �more than
half-filled case�, subject to the natural constraint: N+ND
	L. That is, an arbitrary partition of the integer Ne into two
other integers N and ND does not necessarily denote a physi-
cal sector. For 0	Ne	L, the constraint is guaranteed to be
satisfied. Therefore, all partitions are valid physical sectors.
For example, if Ne=7 and 	L, then the corresponding sec-

tors of states are: �7,0�, �5,1�, �3,2�, and �1,3�. However,
when Ne
L, the constraint will disqualify many partitions.
For example, if L=4 and Ne=7, then the only physical sector
is: �1,3�, as the other partitions such as �3,2� do not respect
the constraint. In general, the physical sectors for Ne	L are
given by the set: ��Ne−2ND ,ND� , ∀ND=0,1 , ¯ , �Ne /2	�,
where �Ne /2	=Ne /2 for even values of Ne and =�Ne−1� /2
for odd values. For Ne
L, we use the relations: N�2L−Ne	
=N�Ne	 and ND�2L−Ne	=L−Ne+ND�Ne	 to find the physical
sectors. These relations are a consequence of the particle-
hole transformation on the electronic operators. Here, N�Ne	
and ND�Ne	 denote the dependence of N and ND on Ne.

The exact solution of H� gives a highly disordered ground
state in terms of the spinless fermions and the Pauli spins.
However, we need to carefully translate its meaning for the
electrons. Interestingly, we are able to show that the ground
state of the infinite-U Hubbard model for a given Ne, is a
Fermi sea, which is 2N�

-fold degenerate �where N� is defined
in Eq. �14�	. Physically, it means that the ground state is
metallic and ideally paramagnetic. In other words, it is not
Nagaoka ferromagnetic. Nor it is a kinematic singlet �like a
normal electronic Fermi sea�.

Now, the proof. Due to the fact that U=� and it is the
chemical potential of the spinless fermions, the ground state
of the Hubbard problem, for a given Ne, lies in the sector
�N� , �Ne−N�� /2�, where N� is the maximum allowed value of
N for the given Ne,

N� = 
Ne, 0 	 Ne 	 L

2L − Ne, L 	 Ne 	 2L .
� �14�

Since N̂ is invariant under U �Eq. �12�	, the infinite-U ground
state corresponds to the Fermi sea of N� spinless fermions
with dispersion �k �Eq. �11�	. We derive the following exact
expression for the ground-state energy:

Eg�N�	 = − 2t cos��

2

N� + 1

L + 1
� sin��

2
N�

L+1�
sin��

2
1

L+1� . �15�

Expectedly, Eg=0 for Ne=0 and 2L �trivial cases: empty and
fully filled bands, respectively�, and also for Ne=L �the half-
filled case for U=��. In the thermodynamic limit �L→��,
for a finite electron density, ne=Ne /L, the ground-state en-
ergy density, eg=Eg /L, can be written as

eg�ne	 = −
2t

�
�sin��ne�� . �16�

Now, we enumerate the spin degeneracy in the ground
state, which will decide the magnetic nature of the ground
state. Let us discuss Ne	L case first. In this case, the ground
sector is �Ne ,0�. That is, the number of electrons is com-
pletely exhausted by the number of spinless fermions. As
ND=0, the remaining L−Ne sites must be empty. The state of
an empty site is uniquely � −

� �. However, the state of a site,
occupied by a single electron, is either � +

• � or � −
• �, correspond-

ing to the fact that it could be an ↑ or ↓ spin electron. There-
fore, corresponding to any given distribution of Ne spinless
fermions on L sites �any one of the LCNe

combinations�, there
are exactly 2Ne states �a total of LCNe

�2Ne states in the
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ground sector�. For example, on a chain with L=7 and Ne

=3, the states in the ground sector are like: � �
•

�
•

�
•

−
�

−
�

−
�

−
� �,

where the filled sites could be in any one of the 7C3 combi-
nations. On each filled site, the Pauli spin could be + or −
�without affecting the number of electrons�. Hence, 23 differ-
ent M� states. Coming back to the general situation, these
2Ne states can be grouped according to their M� values. We
know that M� is a conserved quantity of H�, and it is also
invariant under U �Eq. �12�	. Therefore, 2Ne different M�

states in the ground sector will be degenerate, as the exact
energy eigenvalues of H� are independent of M�. Hence, the
ground state, in the sector �Ne ,0�, is a 2Ne-fold degenerate
Fermi sea of Ne spinless fermions. Since there are only
empty or singly occupied sites, the 2Ne-fold degeneracy is
strictly due to the physical spin of electrons. Therefore, we
conclude that the exact ground state of the infinite-U Hub-
bard model is ideally paramagnetic and metallic �more cor-
rectly, strange or correlated metallic, as it is not a Fermi sea
of the normal electrons�.

Furthermore, we note that the arguments for Ne
L are
the same as that for Ne	L. The �only� key difference be-
tween the two is that the for Ne
L, there are only singly or
doubly occupied sites in the ground sector, while for NeL
the sites are either empty or singly occupied. For example,
when Ne=11 and L=7, then a typical state will be of the
form: � �

•
�
•

�
•

+
�

+
�

+
�

+
� �. This state is the counterpart of a previ-

ously mentioned state for less than half-filling. The physics
of the Hubbard model on a bipartite lattice for Ne electrons is
same as that for 2L−Ne electrons. Without going into the
�repetitive� details of the analysis all over again, we conclude
that there is no Nagaoka ferromagnetism in the one-
dimensional infinite-U Hubbard model, and that the exact
ground state is a 2N�

-fold degenerate Fermi sea of N� spinless
fermions, where N� is defined by Eq. �14�.

To this end, we would like to make five comments. First is
that the state labeling and counting procedure presented
above is applicable to all lattices. It is not specific to 1D
�although the solution is�. Second comment is that, in the
cases different from the present 1D problem, it will be im-
possible to completely get rid of the exchange operators. Due
to which, the different M� states are not guaranteed to be
degenerate. Therefore, we stand a clear chance of finding
some sort of metallic magnetism �ferro or antiferro13 or
something else� on other lattices �and hopping geometries�.
Third is a minor comment about U=−� problem. In this
case, the ground sector corresponds to ND=Ne /2 �for even
Ne� or �Ne−1� /2 �for odd Ne�. The ground state �say for even
Ne� is a LCND

-fold degenerate hard-core bosonic state with no
kinetic-energy gains �due to spinless fermion�. The fourth
comment is about the finite temperature calculations. Since
U is infinite, the ground sector �for a given Ne� is the only
part of the Hilbert space which is accessible by finite tem-
peratures. The thermodynamics of this problem can therefore
be worked out in the canonical ensemble of the spinless fer-
mions. The Pauli spins remain ideally paramagnetic down to
absolute zero temperature. This sets the quantum coherence
temperature for electrons to be zero �even though the Fermi
temperature for the spinless fermions scales with t�.16 The
final comment is about the finite-U problem. The transforma-

tion, U, of Eq. �9� actually solves the finite U problem up to
order t /U. It is H=H�+U�l�

1
2 − n̂l�. Those terms in the hop-

ping which are not contained in H� �dropped in the
infinite-U limit14� contribute only to order �t /U�2 and higher.

We conclude this part by briefly comparing our approach
to the known exact calculations on the infinite-U 1D prob-
lem. The exact expression for the ground-state energy den-
sity in the thermodynamic limit �Eq. �16�	 derived here is
same as the one known from Bethe ansatz.17 For finite L, its
values will differ because the allowed k values depend upon
the boundary condition. The choice of open boundary condi-
tion is just as important to our �mathematical� analysis as the
choice of periodic boundary condition is for the Bethe an-
satz. Physically, these choices are not as important. It has
been known for a while that in the limit U→�, the Bethe
ansatz eigenfunctions reduce into a factorized form consist-
ing of a free spinless fermion part and the spin wave
functions.12,18 This is essentially same as found in our analy-
sis directly by means of the operator transformation. The
present approach and the Bethe ansatz results both agree on
the degeneracy of the spin configurations for U=�. This de-
generacy is lifted in the order �t /U�2. Our approach is differ-
ent from the Bethe ansatz, and it is mathematically much less
challenging �and more transparent� as far as the solution of
the eigenvalue problem is concerned. Moreover, it exactly
solves a very general class of models in one dimension, dis-
cussed in Sec. III. There are many physical quantities, both
static17,18 and dynamic,19–21 which have been calculated by
using Bethe ansatz approach in the infinite-U limit. Pres-
ently, we do not intend to redo those computations. However,
it may be interesting to explore the usefulness of our ap-
proach in those directions.

C. Spin-orbital model

In a different incarnation, the Hamiltonian H� can be
viewed as a one-dimensional model of the coupled spin and
orbital degrees of freedom. By applying the Jordan-Wigner
transformation on the spinless fermions, we can derive the
following Hamiltonian:

HSO = − t�
l=1

L−1

X̂l,l+1��l
+�l+1

− + �l
−�l+1

+ � −
1

2�
l=1

L

���l
z + ��l

z� ,

�17�

where �âl� have been changed to ��l
−�, and �l

z=2n̂l−1. In a
transition-metal ion with twofold orbital degeneracy, the or-
bital degrees of freedom can be described in terms of the
Pauli operators. Let �� denote this orbital degree in the present
discussion. The model HSO is special case of the more gen-
eral Kugel-Khomskii type models.22 Equation �17� thus pre-
sents an exactly solvable spin-orbital lattice model, in which
the spins and the orbitals behave as decoupled. While the
orbital part acts as an XY chain, the spins become paramag-
netic.

III. GENERAL CLASS OF EXACTLY SOLVABLE MODELS

While transforming H� to the tight-binding model of spin-
less fermions, it became clear that a very general class of
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models can be solved exactly by our method. A Hamiltonian
in this class can be written as

H = − t�
l=1

L−1

�âl
†T̂l,l+1âl+1 + âl+1

† T̂l+1,lâl� . �18�

Here, T̂l,l+1 is some unitary operator on the bond �l , l+1�, and

by definition T̂l+1,l= T̂l,l+1
† . Moreover, T̂l,l+1 does not have to

commute with T̂l−1,l and T̂l+1,l+2, while strictly commuting

with the T̂ operators on other bonds, and also with the fer-
mions, �âl�. With a few careful steps of algebra, this Hamil-
tonian can be transformed to a tight-binding model of the
fermions �Eq. �10�	 with the help of U=�l=1

L−1Ul,l+1, where

Ul,l+1= �1− n̂l+1�+ n̂l+1T̂l+1,l. Here, T̂l,l+1=�m=1
l T̂m,m+1 and

T̂l+1,l= T̂l,l+1
† . For a special case in which T̂l,l+1 are just the

phase factors ei�l,l+1, we can get rid of these on a Caley tree of
arbitrary coordination, z �for a nearest-neighbor chain, z=2�.
In this special case, it can be done not only for the fermions
but also for the bosons.

A. Spin-fermion model for higher spins

As an academic exercise, we construct the spin-fermion
models for higher spins, which belong to this general class of
exactly solvable models. We achieve this by constructing the
“correct” analog of the exchange operator for a pair of higher
spins. By correct exchange we mean that �m1��m2� must be-
come �m2��m1� under the exchange operator. For clarity, we
work it out explicitly for the spin-1 case. Here, Sz�m�
=m�m�, with m=1,0 , 1̄ �−1 is denoted as 1̄; for spin-S, m

= S̄, S̄+1, . . . ,S�. The usual spin-spin interaction, S1 ·S2, does
not really exchange m1 and m2. Hence, we construct an op-

erator X̂1,2 such that X̂1,2�m1��m2�= �m2��m1�. For example,

�0��0� remains unaffected under X̂1,2, while �1��1̄� becomes

�1̄��1� and vice versa. Explicitly, in terms of the spin opera-
tors, this spin-1 exchange operator can be written as

X̂1,2 = 1 − �S1z
2 + S2z

2 � +
1

2
S1 · S2 +

1

2
�S1 · S2�2 + �S1 · S2�

��S1zS2z� +
i

2
�S1 � S2�z�S1z − S2z� −

1

2
��S1 � S2�z	2,

�19�

where �S1�S2�z= i
2 �S1+S2−−S1−S2+�. It is clear that we can

similarly construct the exchange operators for higher spins.

Since X̂1,2
2 =1, just like in the spin-1/2 problem, the corre-

sponding spin-fermion model �that is, Eq. �1�	 can be diago-
nalized in the same way.

B. Some physical corollaries

1. Anderson-Hasegawa problem

Our method of getting rid of the unitary factors
has an interesting consequence for the Anderson-
Hasegawa �AH� problem. The AH model,

HAH=−t��l,m�
1+�l·�m

2 �âl
†ei�l,mâm+H.c.�, describes the mo-

tion of locally spin-projected electrons on a lattice, with clas-
sical spins, ��l�, in the background. Very often, the phases
�l,m arising due to the spin-projection along �l and �m are
ignored without proper justification. There have been studies
which rightly emphasize on taking into consideration the ef-
fects of these phases while computing physical properties.23

The special case on a Caley tree discussed earlier, however,
implies that indeed the original HAF can be transformed to

HAF = − t �
�l,m�

1+�l·�m

2 �âl
†âm + H.c.�

on Caley trees. Thus, we give a reason for dropping the
phases in HAF, at least on a Caley tree. On an arbitrary lat-
tice, however, one must keep these phases.

2. Minimal coupling Hamiltonian in 1D

We now briefly discuss the Peierls minimal coupling of
the quantized electromagnetic radiation to the lattice fermi-
ons, in the light of these gauge removing tricks. Consider
tight-binding electrons with nearest-neighbor hopping on an
open 1D lattice. The corresponding gauge-invariant Hamil-
tonian can be written as

H = − t�
l=1

L−1

�
s

↑,↓ � f̂ l+1,s
† f̂ l,s exp�i e

��
l

l+1

Axdx� + H.c.� + HF.

�20�

Here, e=−�e� is the electronic charge, HF=�q,��q��̂q�
† �̂q�

+ 1
2 � is the field Hamiltonian �where �̂q�, �̂q�

† are the Bose
operators for an electromagnetic field of wave vector q and
the polarization ��, and Ax is the x component of the vector
potential. We have chosen the x axis to be along the chain
�y=z=0 line�. In general, the vector potential can be written
as

A� �r� = i�
q,�

 �

2�q�0V
�u�q��r��̂q�

† − u�q�
� �r��̂q�	 , �21�

where u�q� is a normal-mode �vector� function �including the
information on polarization�. Clearly, the vector potential op-
erators at different spatial points commute with each other.

The corresponding electric field operator is given by E� �r�
= i

� �A� �r� ,HF	.
Now again, we get rid of the field-dependent factors from

the hopping by applying the following unitary transforma-
tion:

U = exp
i
e

�
�
l=2

L

n̂l�
1

l

Axdx� , �22�

where n̂l= n̂l,↑+ n̂l,↓. Under this U, we get the following trans-
formed Hamiltonian:

U†HU = − t�
l=1

L−1

�
s

↑,↓

� f̂ l+1,s
† f̂ l,s + H.c.� + U†HFU �23�
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While the hopping becomes simple, the field Hamiltonian
transforms to

U†HFU = HF − e�
l=2

L

n̂l�
1

l

Exdx +
e2

2�0
�

l,l�=2

L

Vl,l�n̂ln̂l�. �24�

Here, the second term is the potential energy in the presence
of electromagnetic field. Suppose Ex is the electric field of a
free radiation propagating in the z direction. Then,
e�l=2

L n̂l�1
l Exdx is same as PxEx, the dipole interaction. Here,

Px=e�l=2
L �l−1�n̂l is the electric polarization operator. Fur-

thermore, Vl,l�= 1
V�1

l dx�1
l dx��q�R�ux,q�

� ux�,q�	 is the “Cou-
lomb” repulsion between electrons, generated by the “ex-
change” of the photon �facilitated by U�. Thus, we have
derived the gauge-independent Coulomb and the dipole-field
interactions, starting from the minimal-coupling Hamiltonian
on a lattice, without any approximations. Since the vector
potential commutes at different points, in principle, we can
do the same on a Caley tree as well.

IV. CONCLUSION

To summarize, we have exactly solved the infinite-U
Hubbard model with nearest-neighbor hopping on an open
chain. We use a canonical representation for electrons, in
which the Hubbard model becomes a spin-fermion model.
This spin-fermion model is exactly solved by applying a
nonlocal unitary transformation. Under this transformation,
the Pauli spins completely decouple from the fermions, as a
result of which, the ground state is correlated metallic and
ideal paramagnetic for arbitrary density of electrons.

This method solves a class of very general models.
Guided by this observation, we have also constructed spin-
fermion models for higher spins by suitably extending the
notion of “exchange” operators for higher spins. It is explic-
itly worked out for spin-1. �The spin only models, using our
definition of the exchange operator for higher spins, exhibit
interesting properties. These calculations will be discussed
elsewhere.� By using the ideas developed here, we have
shown that the phase factors in the Anderson-Hasegawa
model can be dropped on Caley trees. We have also derived
the “dipole” interaction and Coulomb repulsion starting with
Peierls minimal-coupling Hamiltonian.
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